Ultrafast neutralization dynamics of highly charged ions upon impact on 2D materials

R. A. Wilhelm1,2 S. Creutzburg2 J. Schwestka1 A. Niggas1 M. Tripathi3
H. Inani3 R. Kozubek4 M. Schleberger4 J. Kotakoski3 F. Aumayr1

1TU Wien, Institute of Applied Physics
2Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research
3University Vienna, Faculty of Physics
4University Duisburg-Essen, Faculty of Physics and CENIDE

Heavy ions in high charge states carry a large amount of potential energy in addition to their kinetic energy. The potential energy can amount to several 10keV and is released upon neutralization [1]. We recently showed that neutralization of slow highly charged Ar and Xe ions proceeds on a sub-10fs time scale, i.e. during transmission through the very first monolayers of a solid [2]. This feat makes highly charged ions an intriguing tool for efficient modification of 2D materials preventing significant damage to a substrate at the same time. Here we present data on the neutralization dynamics of slow highly charged ions in freestanding single layer graphene and freestanding single layer MoS$_2$. Special emphasise is put on charge exchange of the ions, their kinetic energy loss, and the emission of secondary electrons/photons from the interaction process.