Chemical Sensors for Explosives and CW Detection

T. M. Swager

Massachusetts Institute of Technology

This lecture will detail the creation of ultrasensitive sensors based on electronically active conjugated polymers (CPs) and carbon nanotubes (CNTs). A central concept that a single nano- or molecular-wire spanning between two electrodes would create an exceptional sensor if binding of a molecule of interest to it would block all electronic transport. The use of molecular electronic circuits to give signal gain is not limited to electrical transport and CP-based fluorescent sensors can provide ultratrace detection of chemical vapors via amplification resulting from exciton migration. Nanowire networks of CNTs provide for a practical approximation to the single nanowire scheme and selectivity is generated by covalent and/or non-covalent binding selectors/receptors to the carbon nanotubes. Sensors for a variety of materials and cross-reactive sensor arrays will be described. Polar hydrogen bonding groups provide selectivity for nitro-groups and methods for responding to electrophilic chemical weapons will also be detailed.