Spin-coupling around a carbon vacancy in graphene

<u>M. Casartelli</u>¹ S. Casolo¹ S. Pellegrini¹ G. F. Tantardini^{1,2} R. Martinazzo^{1,2} ¹Dept. of Chemistry, Universita degli Studi di Milano, via Golgi 19, 20133 Milan, Italy ²Istituto di Scienze e Tecnologie Molecolari, CNR, via Golgi 19, 20133 Milan, Italy

Recent magnetization measurements of C atom vacancies in graphene have provided conflicting results, with both spin-1/2 and spin-1 paramagnetic responses observed[1,2]. Spin-half paramagnetism is consistent with C vacancies behaving like simple p_z -defects[3] but it is at odds with chemical intuition which suggests that (at least) one unpaired σ electron has to be left upon vacancy formation, in addition to the π electron common to any p_z -defect. Here, in order to shed light on this issue, we investigate in detail the electronic structure of a bare C-vacancy in graphene, and its interaction with possible simple contaminants typically present in the environment. We employed magnetization-constrained density-functional-theory on periodic models and spin-exact, multireference. second-order perturbation theory on large clusters, and explored the energy landscape of the two low-lying spin states around their equilibrium configurations. In accordance with expectations, we find that the ground state is a triplet with a planar equilibrium geometry, and the excited state is an openshell singlet with a non-planar structure. The singlet lies $\sim 0.2 \ eV$ above the ground-state, *i.e.* at an energy which is yet too high for the two electrons to decouple into independent spin-1/2 paramagnetic species at ordinary temperatures. Thus our results show that a *bare* C-vacancy behaves as a spin - onespecies. Next, we investigated the role that simple adsorbed species such as H adatoms may play in modifying the paramagnetic response of the defective graphene substrate, by following (*ab initio*) the sticking dynamics of H atoms in the neighbourhoods of a C-vacancy. Results show that the sticking crosssection is large (~ $19 \dot{A}^2$, *i.e.* comparable to the geometric cross-sectional area of the defect), and essentially independent of the collision energy. The resulting hydrogenated vacancy has one electron left and behaves as a spin-1/2defect. Overall, our results suggest that foreign species may play an important role in determining the observed magnetic properties of defective carbon compounds, even when magnetic species have been ruled out by a careful sample preparation.

- [2] Ney A. et al., Appl. Phys. Lett. 99/102505, 1-3 (2011).
- [3] Yazyev O. V., Rep. Prog. Phys. 73/056501, 1-16 (2010).

^[1] Nair R. R. et al., Nat. Phys. 8, 199-202 (2012).